
The following contributions are taken from the AdaCore “Gem of the Week” series.
Gems are expert tips and insights that will help you get the most out of Ada 2005. The
full collection of gems can be found at http://www.adacore.com/home/ada_answers,
where you may obtain the source code and post comments as well.

Gem #10: Limited Types in Ada 2005 — Extended Return Statements

Author: Bob Duff, AdaCore

Abstract: Ada Gem #10 — An extended_return_statement may be used to give a name
to the result object being created by a function.

Let’s get started…

A common idiom in Ada 95 is to build up a function result in a local object, and then
return that object:

 function Sum (A : Array_Of_Natural) return Natural is
 Result : Natural := 0;
 begin
 for Index in A’Range loop
 Result := Result + A (Index);
 end loop;
 return Result;
 end Sum;

Ada 2005 allows a notation called the extended_return_statement, which allows you to
declare the result object and return it as part of one statement. It looks like this:

 function Sum (A : Array_Of_Natural) return Natural is
 begin
 return Result : Natural := 0 do
 for Index in A’Range loop
 Result := Result + A (Index);
 end loop;
 end return;
 end Sum;

The return statement here creates Result, initializes it to 0, and executes the code between
“do” and “end return”. When “end return” is reached, Result is automatically returned as
the function result.

For most types, this is no big deal — it’s just syntactic sugar. But for limited types, this
syntax is almost essential:

 function Make_Task (Val : Integer) return Task_Type is
 Result : Task_Type (Discriminant => Val * 3);
 begin
 … -- some statements
 return Result; -- Illegal!

 end Make_Task;

The return statement here is illegal, because Result is local to Make_Task, and returning
it would involve a copy, which makes no sense (which is why task types are limited). In
Ada 2005, we can write constructor functions for task types:

 function Make_Task (Val : Integer) return Task_Type is
 begin
 return Result : Task_Type (Discriminant => Val * 3) do
 … -- some statements
 end return;
 end Make_Task;

If we call it like this:

 My_Task : Task_Type := Make_Task (Val => 42);

Result is created “in place” in My_Task. Result is temporarily considered local to
Make_Task during the “… -- some statements” part, but as soon as Make_Task returns,
the task becomes more global. Result and My_Task really are one and the same object.

When returning a task from a function, it is activated after the function returns. The “… --
some statements” part had better not try to call one of the task’s entries, because that
would deadlock. That is, the entry call would wait until the task reaches an accept
statement, which will never happen, because the task will never be activated.

While the extended_return_statement was added to the language specifically to support
limited constructor functions, it comes in handy whenever you want a local name for the
function result:

 function Make_String (…) return String is
 Length : Natural := 10;
 begin
 if … then
 Length := 12;
 end if;
 return Result : String (1..Length) do
 … -- fill in the characters
 pragma Assert (Is_Good (Result)); null;
 end return;
 end Make_String;

Gem #11: Limited Types in Ada 2005 — Constructor Functions Part 2

Author: Bob Duff, AdaCore

Abstract: Ada Gem #11 — We show here how limited constructor functions can be used
in various contexts to build new limited objects in place.

Let’s get started…

We’ve earlier seen examples of constructor functions for limited types similar to this:

 package P is
 type T (<>) is limited private;
 function Make_T (Name : String) return T; -- constructor function
 private
 type T is new Limited_Controlled with
 record
 …
 end record;
 end P;

 package body P is
 function Make_T (Name : String) return T is
 begin
 return (Name => To_Unbounded_String (Name), others => <>);
 end Make_T;
 end P;

 function Make_Rumplestiltskin return T is
 begin
 return Make_T (Name => “Rumplestiltskin”);
 end Make_Rumplestiltskin;

It is useful to consider the various contexts in which these functions may be called.
We’ve already seen things like:

 Rumplestiltskin_Is_My_Name : T := Make_Rumplestiltskin;

in which case the limited object is built directly in a standalone object. This object will be
finalized whenever the surrounding scope is left.

We can also do:

 procedure Do_Something (X : T);

 Do_Something (X => Make_Rumplestiltskin);

Here, the result of the function is built directly in the formal parameter X of
Do_Something. X will be finalized as soon as we return from Do_Something.

We can allocate initialized objects on the heap:

 type T_Ref is access all T;
 Global : T_Ref;

 procedure Heap_Alloc is
 Local : T_Ref;
 begin
 Local := new T’(Make_Rumplestiltskin);
 if … then
 Global := Local;
 end if;
 end Heap_Alloc;

The result of the function is built directly in the heap-allocated object, which will be
finalized when the scope of T_Ref is left (long after Heap_Alloc returns).

We can create another limited type with a component of type T, and use an aggregate:

 type Outer_Type is limited
 record
 This : T;
 That : T;
 end record;

 Outer_Obj : Outer_Type := (This => Make_Rumplestiltskin,
 That => Make_T (Name => “”));

As usual, the function results are built in place, directly in Outer_Obj.This and
Outer_Obj.That, with no copying involved.

The one case where we _cannot_ call such constructor functions is in an assignment
statement:

 Rumplestiltskin_Is_My_Name := Make_T(Name => ""); -- Illegal!

which is illegal because assignment statements involve copying. Likewise, we can’t copy
a limited object into some other object:

 Other : T := Rumplestiltskin_Is_My_Name; -- Illegal!

Gem #12: Limited Types in Ada 2005 — <> Notation Part 2
Author: Bob Duff, AdaCore

Abstract: Ada Gem #12 — We show how the <> notation in aggregates may be used to
make better use of record-component default values, thus avoiding duplication of code.

Let’s get started…

Have you ever written Ada 95 code like this?

 package P is
 type T is private;
 …
 private
 type T is
 record
 Color : Color_Enum := Red;
 Is_Gnarly : Boolean := False;
 Count : Natural;
 end record;
 end P;

 package body P is
 Object_100 : constant T :=
 (Color => Red, Is_Gnarly => False, Count => 100);
 …
 end P;

We want Object_100 to be a default-initialized T, with Count equal to 100. It’s a little bit
annoying that we had to write the default values Red and False twice. What if we change
our mind about Red, and forget to change it in all the relevant places?

The “<>” notation comes to the rescue. If we want to say, “make Count equal 100, but
initialize Color and Is_Gnarly to their defaults”, we can do this:

 Object_100 : constant T :=
 (Color => <>, Is_Gnarly => <>, Count => 100);

On the other hand, if we want to say, “make Count equal 100, but initialize all other
components, including the ones we might add next week, to their defaults”, we can do
this:

 Object_100 : constant T := (Count => 100, others => <>);

Note that if we add a component “Glorp : Integer;” to type T, then the “others” case
leaves Glorp undefined just as this Ada 95 code would do:

 Object_100 : T;

 Object_100.Count := 100;

Think twice before using “others”.

Gem #13: Interrupt Handling Idioms (Part 1)

Author: Pat Rogers, AdaCore

Abstract: Ada Gem #13 — There are two design idioms commonly used when handling
interrupts with Ada. One has more of the characteristics associated with good software
engineering, the other somewhat better performance. We explore these two idioms in this
gem.

Let’s get started…

Recall that, in Ada, protected procedures are the standard interrupt-handling mechanism.
This approach has a number of advantages over the “traditional” use of non-protected
procedures. First, normal procedures don’t have a priority, but protected objects can have
an interrupt priority assigned and are thus integrated with the overall priority semantics.
Execution of entries and procedures within the protected object will execute at that level
and only higher-level interrupts can preempt that execution. Thus no race conditions are
possible either. Additionally, condition synchronization is expressed directly, via entry
barriers, making interaction with other parts of the system easy to express and
understand. Finally, protected objects support localization of data and their manipulating
routines, as well as localization of multiple interrupt handlers within one protected object
when they each need access to the local data.

The response to interrupts is often arranged in levels, with a first-level handler providing
a very fast response that does limited processing and a secondary-level handler that does
more expensive processing outside of the interrupt context, at application-level priority.
A natural expression of this structure is to use a protected procedure as the first-level
handler and a task as the secondary level. The protected procedure responds to the
interrupt and then signals the task when it should run.

For example, consider message handling over a UART (Universal Asynchronous
Receiver Transmitter), in which an interrupt signals arrival of the first character. The
interrupt handler procedure would capture that character, place it into a buffer within the
protected object, and then either poll for the remaining characters (if appropriate) or reset
for the next interrupt. Once the entire message is received the protected procedure could
then signal the secondary handler task to parse the message and respond accordingly.

We will implement such a message processor using both design idioms. In each case we
encapsulate both levels of the interrupt handling code inside the body of a package named
Message_Processor. All the processing is done in the package body and nothing is
exported that requires a completion. Hence we need a pragma Elaborate_Body in the
declaration to make the package body legal. The content of the package declaration, as
shown below, would probably go in the body as well, but for the purpose of this gem we
will leave them here.

package Message_Processor is

 pragma Elaborate_Body;

 subtype Message_Size is Integer range 1 .. 256; — arbitrary

 type Contents is array (Message_Size range <>) of Character;

 type Message (Size : Message_Size) is
 record
 Value : Contents (1..Size);
 Length : Natural := 0;
 end record;

end Message_Processor;

First Design Idiom

In the first idiom the first-level protected procedure handler signals the second-level task
handler by enabling a barrier on a protected entry in the same protected object. The
second-level task suspends on the entry call and, when allowed to resume execution,
performs the secondary processing. Entry parameters can be used to pass information to
the task, for example the message received on the UART. The code for this idiom results
in a package body structured as follows:

with UART;
with System;
with Ada.Interrupts;

package body Message_Processor is

 Port : UART.Device;

 protected Receiver is … — the first-level handler

 protected body Receiver is …

 task Process_Messages is …

 task body Process_Messages is …

begin
 UART.Configure (Port, UART_Data_Arrival, UART_Priority);
 UART.Enable_Interrupts (Port);
end Message_Processor;

In the above, the protected object Receiver is the first-level handler; the secondary
handler is the task Process_Messages. The UART hardware is represented by the object
named Port, of a type defined by package UART (not shown). The package body
executable part automatically configures the UART and enables its interrupts after the
protected object and task are elaborated.

The protected object Receiver contains the interrupt-handling procedure, the entry to be
called by the secondary handler task, a buffer containing the currently received
characters, and a boolean variable used for the entry barrier:

 UART_Priority : constant System.Interrupt_Priority := …
 UART_Data_Arrival : constant Ada.Interrupts.Interrupt_Id := …

 protected Receiver is
 entry Wait (Msg : access Message);
 pragma Interrupt_Priority (UART_Priority);
 private
 procedure Handle_Incoming_Data;
 pragma Attach_Handler (Handle_Incoming_Data, UART_Data_Arrival);
 Buffer : Contents (Message_Size);
 Length : Natural := 1;
 Message_Ready : Boolean := False;
 end Receiver;

The pragma Interrupt_Priority assigns the given priority to the whole protected
object. No other interrupts at or below that level will be enabled whenever the procedure
is executing. Note that the procedure is declared in the private part of the protected
object. Placement there precludes “accidental” calls from client software in future
maintenance activities. Note also the pragma Attach_Handler that permanently ties the
procedure to the interrupt.

In the body of the protected object we have the bodies for the entry and the procedure.
The entry is controlled by the boolean Message_Ready that is set to True when the
interrupt handler determines that all the characters have been received for a given
message. The entry body copies the buffer content directly into the caller’s Message
object and then resets the buffer for the next message arrival.

 protected body Receiver is

 entry Wait (Msg : access Message) when Message_Ready is
 begin
 Msg.Value (1 .. Length) := Buffer (1 .. Length);
 Msg.Length := Length;
 — reset for next arrival
 Length := 1;
 Message_Ready := False;
 end Wait;

 procedure Handle_Incoming_Data is
 begin
 UART.Disable_Interrupts (Port);
 Buffer (1) := UART.Data (Port);
 — poll for all remaining
 while UART.Data_Available (Port) loop
 Length := Length + 1;
 Buffer (Length) := UART.Data (Port);
 end loop;
 UART.Enable_Interrupts (Port);
 — wake up the task

 Message_Ready := True;
 end Handle_Incoming_Data;

 end Receiver;

The interrupt handler procedure uses the polling approach in this example. It first disables
further interrupts from the UART and then captures all the incoming characters. Finally,
in re-enables the device interrupts and enables the entry by setting Message Ready to
True.

The second-level handler task has no entries of its own because nothing calls it. We only
need to set the priority of the task, as specified in package Config (not shown) that
defines all the priorities of the application.

 task Process_Messages is
 pragma Priority (Config.Process_Messages_Priority);
 end Process_Messages;

 task body Process_Messages is
 Next_Message : aliased Message (Size => Message_Size’Last);
 begin
 — any initialization code
 loop
 Receiver.Wait (Next_Message’Access);
 — process Next_Message …
 end loop;
 end Process_Messages;

The task suspends until the entry is executed and then processes the message is some
application-defined way.

Next week we will explore the second design idiom and then compare the two. Stay
tuned for more…

Gem #14: Interrupt Handling Idioms (Part 2)

Author: Pat Rogers, AdaCore

Abstract: Ada Gem #14 — There are two design idioms commonly used when handling
interrupts with Ada. One has more of the characteristics associated with good software
engineering, the other somewhat better performance. We explore these two idioms in this
gem.

Let’s get started…

Last week we introduced this topic and explored the first of the two designs. The gist of it
is that we want to implement a multi-level response to interrupts, in which a protected
procedure implements the first-level handler and a task implements the secondary level
handling outside of the interrupt context. We use serial communications over a UART
(Universal Asynchronous Receiver Transmitter) as the example. In both designs we
encapsulate the two levels of the interrupt handling code inside the body of a package
named Message_Processor.

Second Design Idiom

The second idiom is similar to the first, in that a protected object encapsulates the
interrupt handling procedure, but this second design uses a Suspension_Object, instead
of a protected entry, to signal the task. The type Suspension_Object is declared within
package Ada.Synchronous_Task_Control and is essentially a boolean flag with
synchronization. A single task can await a given Suspension_Object becoming “true”
and will suspend until another task sets that state. The resulting structure for the package
body is as follows:

with UART;
with System;
with Ada.Interrupts;
with Ada.Synchronous_Task_Control;

package body Message_Processor is

 Port : UART.Device;

 package STC renames Ada.Synchronous_Task_Control;

 Message_Ready : STC.Suspension_Object;

 Buffer : Contents (Message_Size);
 Length : Natural := 1;

 protected Receiver is …

 protected body Receiver is …

begin

 UART.Configure (Port, UART_Data_Arrival, UART_Priority);
 UART.Enable_Interrupts (Port);
end Message_Processor;

The significant differences in structure include the new Suspension_Object and the
buffer containing the most recently received message, moved from within the protected
object to the package body declarative part.

The protected object Receiver no longer declares an entry because it uses
Message_Ready to signal the task. No local data are required either. Only the interrupt
handling procedure is required.

 protected Receiver is
 pragma Interrupt_Priority (UART_Priority);
 private
 procedure Handle_Incoming_Data;
 pragma Attach_Handler (Handle_Incoming_Data, UART_Data_Arrival);
 end Receiver;

The body of the procedure is identical to that of the other design idiom except that it sets
the Suspension_Object to True instead of setting a local boolean variable used in an
entry barrier.

 protected body Receiver is

 procedure Handle_Incoming_Data is
 begin
 — as before
 …

 STC.Set_True (Message_Ready);
 end Handle_Incoming_Data;

 end Receiver;

Now the task does the work that the entry did in the other design. It first waits for
Message_Ready to be True, suspending if necessary. Then it copies the buffer content to
the local Message object and resets for the next arrival. Note that when
Suspend_Until_True executes, the specified Suspension_Object is automatically set
to False on exit.

 task body Process_Messages is
 Next_Message : aliased Message (Size => Message_Size’Last);
 begin
 — any initialization code here…
 loop
 STC.Suspend_Until_True (Message_Ready);
 — capture the new message in Buffer
 Next_Message.Value (1..Length) := Buffer (1..Length);
 Next_Message.Length := Length;
 — reset for next arrival
 Length := 1;

 — process Next_Message …
 end loop;
 end Process_Messages;

Design Idiom Comparison

The first idiom, in which an entry is used to signal the second-level handler, is a better
design from a software engineering point of view: functionality is grouped with the
manipulated data (the buffer is local to the protected object), condition synchronization is
directly expressed via the entry barrier and is not implemented by the calling task, and
communication is accomplished via the entry parameters. All these characteristics result
in a more maintainable, robust implementation.

However, the semantics of protected objects implies a run-time cost that, albeit relatively
small, is greater than that of a Suspension_Object. The second idiom is very likely to be
faster than the first, assuming a decent implementation of the type Suspension_Object.
However, placing all the code within the package body limits the deleterious effects of
the resulting structure.

The interrupt handling and management facilities provided by Ada are defined in the
Systems Programming Annex, section C.3, of the Reference Manual. Support is
extensive and is well worth studying.

Gem #15: Timers

Author: Anh Vo, Santa Clara, California

Abstract: Ada Gem #15 — Timers are essential software elements of embedded and
real-time systems. Thus, making an intuitive and easy way to create timers helps in the
software design process.

Let’s get started…

Timers are essential software elements of embedded and real-time systems. Thus, making
an intuitive and easy way to create timers helps in the software design process. Ada
provides a predefined package named Ada.Real_Time.Timing_Events for doing just that.
With this package, a timer, one-shot or periodic one, can be created with a breeze.
Furthermore, these timers can be genericized for different durations. Going one step
further these generic timers can be combined in a single generic package as shown below
along with the test codes. Note that the test codes are pretty crude. However, the output is
printed out for each second approximately. Thus, the test results can be checked using
one thousand count rule, one thousand one, one thousand two…

Here is an example for creating a 250 millisecond one-shot timer.

with Generic_Timers;
with Ada.Real_Time;
with Ada.Text_Io;
…
declare
 use Ada;
 Span : constant Time_Span := Real_Time.Milliseconds (250);
 Timer_Id : constant String := “250 Millisecond One Shot timer”;

 procedure Timer_Handler is
 begin
 Put_Line (”Do whatever is necessary when the timer expires”);
 end Timer_Handler;

 package The_Timer is new Generic_Timers (True, Timer_Id, Span,
Timer_Hander); –timer object
begin
 …
 The_Timer.Start;
 …
end;
…

Other one-shot timers and periodic timers for different durations are in the test package
Timers_Test. Note that at my current project creating a timer takes five to ten times
longer and much less intuitive. On this note, enjoy it with a smile.

Gem #16: Pragma No_Return

Author: Bob Duff, AdaCore

Abstract: Ada Gem #16 — Pragma No_Return may be used to mark procedures that
cannot return normally.

Let’s get started…

Did he ever return,
No he never returned
And his fate is still unlearn’d
He may ride forever
‘neath the streets of Boston
He’s the man who never returned.
– from “Charlie on the M.T.A.”
– by The Kingston Trio

It is occasionally useful to have a procedure that never returns normally, where
“normally” means reaching the “end” or executing a “return;”. For example, a procedure
might format an error message based on its parameters, send the message to a log file,
and then unconditionally raise an exception. Other ways to avoid returning normally are
to loop forever, and to wait upon an entry barrier that never becomes True.

Such procedures are unusual, and therefore deserve to be documented. A comment
works, but pragma No_Return is better because the compiler makes sure that the
procedure does not, in fact, return:

 procedure Log_Error (…);
 pragma No_Return (Log_Error); — Mark it as a non-returning
procedure.

 procedure Log_Error (…) is
 begin
 Put_Line (…);
 raise Some_Error;
 end Log_Error;

Pragma No_Return in Ada 2005 was inspired by the implementation-defined pragma
No_Return that has existed in GNAT for some time. Now it’s a standard feature of the
Ada language.

According to the Ada RM, if a non-returning procedure reaches the “end”,
Program_Error is raised. But that’s just a tripping hazard; what we really want is a
compile-time check. In fact, if there is any control-flow path that can reach the “end” of a
supposedly non-returning procedure, GNAT will give a warning. As always, you can tell
GNAT to treat warnings as errors. These warnings are necessarily conservative, so you

might sometimes need to use pragma Warnings (Off) to prevent the compiler from
“crying wolf”.

See also paragraph 6.5.1(1.a/2) of the Annotated Ada Reference Manual, regarding
pragma No_Deposit: http://www.adaic.org/standards/05aarm/html/AA-6-5-1.html

Gem #17: Pragma No_Return, Part 2 (functions)

Author: Bob Duff, AdaCore

Abstract: Ada Gem #17 — GNAT warns about functions that might reach their “end”,
and sometimes these warnings are false alarms. Pragma No_Return can be used to
suppress such false alarms.

Let’s get started…

A function should always return a value or raise an exception. That is, reaching the “end”
of a function is an error. In Ada, this error is detected in two ways:

1. Every function must contain at least one return statement. This rule is too liberal,
because some control-flow path might bypass the return statement. This rule is too
conservative, because it requires a return even when all you want to do is raise an
exception:

 function F (…) return … is
 begin
 raise Not_Yet_Implemented; — Illegal!
 end F;

Function F isn’t WRONG — it’s just not finished. In my opinion, this rule should have
been abolished, and replaced with a control-flow analysis similar to what GNAT does
(see below).

2. If a function reaches its “end”, Program_Error is raised. This catches all such errors,
but it’s unsatisfying; a compile-time check would be better.

Indeed, GNAT provides an effective compile-time check: it gives a warning if there is
any control-flow path that might reach the “end”:

 function F (…) return … is
 begin
 if Some_Condition then
 return Something;
 elsif Some_Other_Condition then
 return Something_Else;
 end if;
 — CAN get here!
 end F;

There is a bug, if Some_Condition and Some_Other_Condition don’t cover all the
cases, and GNAT will warn. We can fix it in several ways, such as:

 function F (…) return … is
 begin
 if Some_Condition then

 return Something;
 elsif Some_Other_Condition then
 return Something_Else;
 else
 raise Some_Exception;
 end if;
 end F;
or:
 function F (…) return … is
 begin
 if Some_Condition then
 return Something;
 else
 pragma Assert (Some_Other_Condition);
 return Something_Else;
 end if;
 end F;

or (and here’s the No_Return):

 procedure Log_Error (…);
 pragma No_Return (Log_Error);

 function F (…) return … is
 begin
 if Some_Condition then
 return Something;
 elsif Some_Other_Condition then
 return Something_Else;
 else
 Log_Error (…);
 end if;
 end F;

GNAT will not cry wolf on the last three versions of F, because it does a simple control-
flow analysis to prove that every path reaches either a return statement, or a raise
statement, or a non-returning procedure (which presumably contains a raise statement,
directly or indirectly).

One way to look at it is that pragma No_Return allows you to wrap a raise statement in a
slightly higher level abstraction, without losing the above-mentioned control-flow
analysis. No_Return is part of the contract; F relies on Log_Error not returning, and the
compiler ensures that the body of Log_Error obeys that contract.

Gem #18: Warnings in GNAT

Author: Bob Duff, AdaCore

Abstract: Ada Gem #18 — This “gem” is not about the Ada language, but about a set of
GNAT-specific features related to warnings. We discuss how to make the best use of
GNAT’s warnings.

Let’s get started…

The recent “gems” about pragma No_Return talked a lot about compile-time checks that
generate warnings. Indeed, GNAT is capable of generating lots of useful warnings. Here
is some advice about how to get the most out of these warnings.

What’s the difference between a “warning” and an “error”? First, errors are generally
violations of the Ada language rules as specified in the Ada Reference Manual; warnings
are GNAT specific. Thus, other Ada compilers might not warn about the same things that
GNAT does. Second, warnings are typically conservative; that is, some warnings will be
false alarms, and the programmer needs to study the code to see if the warning is a real
problem.

Some warnings are given by default, whereas some are given only if a switch enables
them. Use the -gnatwa switch to turn on (almost) all warnings.

Warnings are useless if you don’t do something about them. If you give your team-
member some code that causes warnings, how are they supposed to know if they
represent real problems? Pretty soon people will ignore warnings, and they will scatter
themselves all about the code. Use the -gnatwae switch to turn on (almost) all warnings,
and to treat warnings as errors. This will force you to get a clean (no warnings or errors)
compilation.

But some warnings are false alarms. Use pragma Warnings (Off) to suppress false
alarms. It’s best to be as specific as possible: narrow down to a single line of code, and a
single warning message. And use a comment to explain why the warning is a false alarm,
if it’s not obvious. The following, compiled with -gnatwae:

 package body Warnings_Example is

 procedure Mumble (X : Integer) is
 begin
 null;
 end Mumble;

 end Warnings_Example;

will cause GNAT to complain:

warnings_example.adb:5:22: warning: formal parameter "X" is not
referenced

But the following will compile cleanly:

 package body Warnings_Example is

 pragma Warnings (Off, "formal parameter ""X"" is not
referenced");
 procedure Mumble (X : Integer) is
 pragma Warnings (On, "formal parameter ""X"" is not referenced");
 -- X is ignored here, because blah blah blah...
 begin
 null;
 end Mumble;

 end Warnings_Example;

Here we’ve suppressed the specific warning message on a specific line.

If you get many warnings of a specific type, and it’s not feasible to fix them all, then
suppress that type of message, so the good warnings won’t get buried beneath a pile of
bogus ones. The -gnatwaeF switch will silence the warning on the first version of
Mumble above: the F means suppress warnings on unreferenced formal parameters, and
would be a good idea if you have lots of those.

In summary, I suggest turning on as many warnings as makes sense for your project.
Then whenever you see a warning message, look at the code and decide if it’s real. If so,
fix the code. If it’s a false alarm, suppress the warning. Either way, make the warning
disappear before checking your code into your configuration management system.

The details of the switches and pragmas can be found in the GNAT Reference Manual
and User Guide.

Gem #19: XML streaming of Ada objects

Author: Pascal Obry, EDF R&D

Abstract: Ada Gem #19 — XML streaming of Ada objects

Let’s get started…

Since Ada 95 it has been possible to stream any object. Using 'Input/'Output or
'Read/'Write attributes, any object (tagged or not) can be streamed using a binary
representation. This means that objects can be written into a file or sent over a socket, for
example.

Let’s take a simple object hierarchy to illustrate this feature. We’ll have a Point (x and y
coordinate) and a Pixel (a Point with a color).

 package Object is

 type Point is tagged record
 X, Y : Float;
 end record;

 type Color_Name is (Red, Green, Blue);

 type Pixel is new Point with record
 Color : Color_Name;
 end record;
 end Object;

When writing a Point or a Pixel the first bytes in the stream are the tag external
representation then the object’s attribute values.

 declare
 File : File_Type;
 P : Point'Class := ...;
 begin
 Create (File, Out_File, "streamed.data");
 Point'Class'Output (Text_Streams.Stream (File), P);
 Close (File);
 end;

The stream will contain something like (where is the character hexadecimal code):

 <01> <00> <00> <00> <0C> <00> <00> <00> O B J E C T . P I X E L
 <9A> <99> <99> <3f> <66> <66> <06> <41> <00>

The tag is an important part as it will be used to be able to create the proper object
instance out of the stream.

 P := constant Point'Class :=

 Point'Class'Input (Text_Streams.Stream (File));

All is well! No, there is a little missing feature. There is no way to control how the
external tag is streamed. In fact, it is a string and the bounds (lower and upper) are first
output into the stream. These bounds are plain numbers written in binary.

In the above example we have the four first bytes for lower bound (equal to 1) and the
four following bytes for the upper bound (equal to 12) then the twelve bytes for the
external tag full name OBJECT.PIXEL.

In Ada 95 there is no way to stream a textual representation of objects!

But the good news is… Ada 2005 can do this. Ada 2005 goes further by adding support
to control finely the external representation of any objects. This means that it is now
possible to create a textual representation of such an object using the 'Class'Input and
'Class'Output attributes.

Let’s put in place the missing pieces.

First the 'Read and 'Write attributes to output or read the XML representation of a Point
or a Pixel.

 with Ada.Streams;

 package Object is

 type Point is ...

 procedure Read (S : access Root_Stream_Type'Class; O : out
Point);
 for Point'Read use Read;

 procedure Write
 (S : access Root_Stream_Type'Class; O : in Point);
 for Point'Write use Write;

 type Pixel is ...

 procedure Read (S : access Root_Stream_Type'Class; O : out
Pixel);
 for Pixel'Read use Read;

 procedure Write
 (S : access Root_Stream_Type'Class; O : in Pixel);
 for Pixel'Write use Write;

The Read routines could be implemented using a full featured XML parser like
XML/Ada. For conciseness, we will use two very simple XML oriented routines:

 procedure Skip_Tag
 (S : access Ada.Streams.Root_Stream_Type'Class;

 Ending : in Character := '>');
 -- Skip the next tag on stream S, returns when Ending is found

 function Get_Value
 (S : access Ada.Streams.Root_Stream_Type'Class) return String;
 -- Returns the current value read on stream S

Using those routines the 'Read and 'Write implementation are straightforward. Here is
the implementation for a Point:

 procedure Read (S : access Root_Stream_Type'Class; O : out Point) is
 begin
 Skip_Tag (S); O.X := Float'Value (Get_Value (S)); Skip_Tag (S,
ASCII.LF);
 Skip_Tag (S); O.Y := Float'Value (Get_Value (S)); Skip_Tag (S,
ASCII.LF);
 end Read;

 procedure Write (S : access Root_Stream_Type'Class; O : in Point) is
 begin
 String'Write (S, " <x>" & Float'Image (O.X) & "</x>" &
ASCII.LF);
 String'Write (S, " <y>" & Float'Image (O.Y) & "</y>" &
ASCII.LF);
 end Write;

The last missing piece is the handing of the tag. We want the tag to be simply: <point>
and <pixel> (no bound and just the name of the object instead of the full name prefixed
by the enclosing package name). To set the proper tag name we use the External_Tag
attribute:

 package Object is

 type Point is ...
 for Point'External_Tag use "point";

 type Pixel is ...
 for Pixel'External_Tag use "pixel";

Then we want to plug in our own XML oriented implementation of the 'Class'Input
and 'Class'Output attributes. This is necessary only for the root type Point:

 package Object is

 type Point is ...
 for Point'External_Tag use "point";

 procedure Class_Output
 (S : access Ada.Streams.Root_Stream_Type'Class; O : in
Point'Class);
 for Point'Class'Output use Class_Output;

 function Class_Input

 (S : access Ada.Streams.Root_Stream_Type'Class) return
Point'Class;
 for Point'Class'Input use Class_Input;

The Class_Output routine must output the opening XML tag, output the object itself and
then the closing XML tag. Quite simple to do; the following is the commented code:

 procedure Class_Output
 (S : access Ada.Streams.Root_Stream_Type'Class; O : in
Point'Class) is
 begin
 -- Write the opening tag
 Character’Write (S, ‘<');
 String'Write (S, Ada.Tags.External_Tag (O'Tag));
 String'Write (S, '>‘ & ASCII.LF);

 — Write the object, dispatching call to Point/Pixel’Write
 Point’Output (S, O);

 — Write the closing tag
 String’Write (S, “‘ & ASCII.LF);
 end Class_Output;

And now the final part using Ada.Tags.Generic_Dispatching_Constructor which
will create an object out of a stream given the object’s tag. This must do the exact
opposite of the Class_Output routine. The opening XML tag is read, then the object
using Generic_Dispatching_Constructor and finally the closing XML tag.

 function Class_Input
 (S : access Ada.Streams.Root_Stream_Type'Class) return Point'Class
 is
 function Dispatching_Input is
 new Ada.Tags.Generic_Dispatching_Constructor
 (T => Point,
 Parameters => Ada.Streams.Root_Stream_Type'Class,
 Constructor => Point'Input);
 Input : String (1 .. 20);
 Input_Len : Natural := 0;
 begin
 -- On the stream we have , we want to get “tag_name”
 — Read first character, must be ‘<'
 Character'Read (S, Input (1));
 if Input (1) /= '<' then
 raise Ada.Tags.Tag_Error with "starting with " & Input (1);
 end if;

 -- Read the tag name
 Input_Len := 0;
 for I in Input'range loop
 Character'Read (S, Input (I));
 Input_Len := I;
 exit when Input (I) = '>‘;
 end loop;

 — Check ending tag
 if Input (Input_Len) /= ‘>’
 or else Input_Len <= 1
 then -- Empty tag
 raise Ada.Tags.Tag_Error with "empty tag";
 else
 Input_Len := Input_Len - 1;
 end if;

 declare
 External_Tag : constant String := Input (1 .. Input_Len);
 O : constant Point'Class := Dispatching_Input
 (Ada.Tags.Internal_Tag (External_Tag), S);
 -- Dispatches to appropriate Point/Pixel'Input depending on
 -- the tag name.
 begin
 -- Skip closing object tag
 Skip_Tag (S); Skip_Tag (S, ASCII.LF);
 return O;
 end;
 end Class_Input;

At this point the code shown at the start will still work without modification. The fact that
the object is streamed using an XML representation is transparent to the users of the
Object package.

As a final note, for conciseness, the code as-is does not output conformant XML
documents as there is no XML header and there are multiple root nodes. This is left as an
exercise to the reader.

Gem #20: Using pragma Shared_Passive for data persistence

Author: Pascal Obry, EDF R&D

Abstract: Ada Gem #20 — Using pragma Shared_Passive for data persistence.

Let’s get started…

Data persistence can be achieved in many ways starting as simple as using hand-written
code to store and load data into some text files to something as complex as mapping the
data into a relational or object database for example.

In some cases we just want to store the content of a set of variables. Ada provides such
support using the Annex-E shared passive pragma. Let’s write a simple counter that will
increment each time the application is run:

 package Store is
 pragma Shared_Passive;
 Counter : Natural := 0;
 end Store;

And yes that’s all! The variable’s current value is read at elaboration time and written
during program finalization. Shared passive unit state is saved on disk using one file for
each top-level declaration (variables, protected objects). The filename is composed of the
unit name and the declaration name separated by a dot. The above counter variable state
will be saved into the file named “store.counter” for example.

So the main is as simple as:

 with Ada.Text_IO;
 with Store;

 procedure Main is
 use Ada.Text_IO;
 begin
 Put_Line (”Counter : ” & Natural’Image (Store.Counter));
 Store.Counter := Store.Counter + 1;
 end Main;

Each time this program is run it will increment Counter by one. There is nothing to save
or load explicitly.

In the context of concurrent programming it may be necessary to add proper
synchronization. This can be easily done by using a protected object on the shared
passive package.

 package Store is
 pragma Shared_Passive;

 protected Shared is
 function Counter return Natural;
 procedure Increment;
 private
 C : Natural := 0;
 end Shared;
 end Store;

Note that the set of objects that can be declared is restricted as a shared passive unit can
only depend on pure or other shared passive units. So, for example, it is not possible to
declare an Unbounded_String nor any Ada.Containers in a shared passive unit.

Yet it is possible to declare complex objects like records or arrays in a shared passive
partition and have them automatically saved. Let’s take for example the following
complex matrix:

 package Store is
 pragma Shared_Passive;

 type Complex is record
 X, Y : Float;
 end record;

 type Matrix is array
 (Positive range <>, Positive range <>) of Complex;

 M : Matrix (1 .. 3, 1 .. 3);

 end Store;

In spite of the limitations, this cheap persistence support can be quite handy in some
circumstances.

Gem #21: How to parse an XML text

Author: Emmanuel Briot, Senior Software Engineer, AdaCore

Abstract: Ada Gem #21 — The World Wide Web Consortium (W3C) develops various
specifications around the XML file format. In particular, it specifies various APIs to load,
process and write an XML file. Although these APIs are not specified for Ada, XML/Ada
tries to conform as closely as possible to them. This gem describes how to use XML/Ada
to parse an XML file.

Let’s get started…

There are two main APIs to parse an XML file. One (the Document Object Model,
DOM) reads the file and generates a tree in memory representing the whole document.
Typically, because of the amount of operations mandated by the specifications, this tree
is several times larger than the document itself, and thus depending on the amount of
memory on your machine, it might limit the size of documents your application can read.
On the other hand, it provides a lot of flexibility in the handling of these trees.

The other method (SAX) is based on callbacks, which are called when various constructs
are seen while reading the XML file. This requires almost no memory, but makes the
processing of the XML file additional work for your application. It is however very well
suited when you want to store the XML data in an application-specific data structure. In
fact, XML/Ada itself uses SAX to build the DOM tree.

In both cases, XML/Ada needs an object (an “input_source”) to read the actual XML
data. This data can be found either on the disk, in memory, read from a socket, or any
other possible source you can imagine. XML/Ada is carefully constructed so that it
doesn’t require the whole document in memory, and can just read one character at a time,
which makes it adaptable to any possible input. This gem does not cover how to write
your own input streams. This is in general quite easy, the only difficulty is to properly
convert the bytes you are reading to unicode characters.

Here is a small example on using the DOM API to create a tree in memory. In this
example, we are assuming the most frequent case of an XML file on the disk, and
therefore we are using a File_Input as the input. The second object we need is the XML
parser itself. When we want to create a DOM tree, we need to use a Tree_Reader, or a
type derived from it. As we will see later, this is in fact a SAX parser (that is an event-
based XML parser) whose callbacks are implemented to create the DOM tree. You can of
course override its primitive operations if you want to do additional things (like verbose
output, redirect error messages, pre-processing of the XML nodes,…).

with Input_Sources.File; use Input_Sources.File;
with DOM.Readers; use DOM.Readers;
with DOM.Core; use DOM.Core;

procedure Read_XML_File (Filename : String) is

 Input : File_Input;
 Reader : Tree_Reader;
 Doc : Document;
begin
 Open (Filename, Input);
 Parse (Reader, Input);
 Close (Input);

 Doc := Get_Tree (Reader);
 ...
 Free (Reader);
end Read_XML_File;

The first three lines read the file into memory. The fourth line gets a handle on the tree
itself, which you can then manipulate with the various subprograms found in the
DOM.Core.* packages (and that are mandated by the W3C specifications). When we are
done, we simply free the memory.

There are various settings that can be set on the reader before we actually parse the XML
stream, for instance whether it should support XML namespaces, whether we want to
validate the input, and so on.

As we mentioned before, there exists a second, lower-level API called SAX which is
event-based. It defines one tagged type, a Reader, which has several primitive operations
that act as callbacks. You can override the ones you want. In general, the result of calling
them is to create an in-memory representation of the XML input (which is what the DOM
interface does, really).

The following short example only detects the start of elements in the XML file, and prints
their name on standard output. It has little interest in real applications, but is a good
framework on which to base your own SAX parsers.

with Sax.Attributes;
with Sax.Readers; use Sax.Readers;
with Unicode.CES; use Unicode.CES;

package Debug_Parsers is
 type Debug_Reader is new Reader with null record;
 overriding procedure Start_Element
 (Handler : in out Debug_Reader;
 Namespace_URI : Unicode.CES.Byte_Sequence := "";
 Local_Name : Unicode.CES.Byte_Sequence := "";
 Qname : Unicode.CES.Byte_Sequence := "";
 Atts : Sax.Attributes.Attributes'Class);
end Debug_Parsers;

Here is the implementation of the Start_Element callback. We are assuming, in this
simple example, that the console on which we are printing the output can accept unicode
characters (in fact, all Put_Line does is to print a series of bytes, which are interpreted by
the console to do the proper rendering of unicode glyphs).

with Ada.Text_IO; use Ada.Text_IO;

package body Debug_Parsers is
 procedure Start_Element
 (Handler : in out Debug_Reader;
 Namespace_URI : Unicode.CES.Byte_Sequence := "";
 Local_Name : Unicode.CES.Byte_Sequence := "";
 Qname : Unicode.CES.Byte_Sequence := "";
 Atts : Sax.Attributes.Attributes'Class)
 is
 begin
 Put_Line ("Found start of " & Qname);
 end Start_Element;
end Debug_Parsers;

And finally here is a short example of a program using that parser. Notice how it closely
mimics what we did for DOM (which is not so surprising, since, once again, the DOM
parser itself is really a special implementation of a SAX parser).

with Input_Sources.File; use Input_Sources.File;
with Debug_Parsers; use Debug_Parsers;

procedure Test_Sax is
 Input : File_Input;
 Reader : Debug_Reader;
begin
 Open (Filename, Input);
 Parse (Reader, Input);
 Close (Input);
end Test_Sax;

