
The following contributions are taken from the AdaCore “Gem of the Week” series.  
Gems are expert tips and insights that will help you get the most out of Ada 2005.  The 
full collection of gems can be found at http://www.adacore.com/home/ada_answers, 
where you may obtain the source code and post comments as well. 

Gem #10: Limited Types in Ada 2005 — Extended Return Statements 

Author: Bob Duff, AdaCore 

Abstract: Ada Gem #10 — An extended_return_statement may be used to give a name 
to the result object being created by a function.  

Let’s get started… 

A common idiom in Ada 95 is to build up a function result in a local object, and then 
return that object: 

   function Sum (A : Array_Of_Natural) return Natural is 
      Result : Natural := 0; 
   begin 
      for Index in A’Range loop 
         Result := Result + A (Index); 
      end loop; 
      return Result; 
   end Sum; 

Ada 2005 allows a notation called the extended_return_statement, which allows you to 
declare the result object and return it as part of one statement. It looks like this: 

   function Sum (A : Array_Of_Natural) return Natural is 
   begin 
      return Result : Natural := 0 do 
         for Index in A’Range loop 
            Result := Result + A (Index); 
         end loop; 
      end return; 
   end Sum; 

The return statement here creates Result, initializes it to 0, and executes the code between 
“do” and “end return”. When “end return” is reached, Result is automatically returned as 
the function result. 

For most types, this is no big deal — it’s just syntactic sugar. But for limited types, this 
syntax is almost essential: 

   function Make_Task (Val : Integer) return Task_Type is 
      Result : Task_Type (Discriminant => Val * 3); 
   begin 
      … -- some statements 
      return Result; -- Illegal! 



   end Make_Task; 

The return statement here is illegal, because Result is local to Make_Task, and returning 
it would involve a copy, which makes no sense (which is why task types are limited). In 
Ada 2005, we can write constructor functions for task types: 

   function Make_Task (Val : Integer) return Task_Type is 
   begin 
      return Result : Task_Type (Discriminant => Val * 3) do 
         … -- some statements 
      end return; 
   end Make_Task; 

If we call it like this: 

    My_Task : Task_Type := Make_Task (Val => 42); 

Result is created “in place” in My_Task. Result is temporarily considered local to 
Make_Task during the “… -- some statements” part, but as soon as Make_Task returns, 
the task becomes more global. Result and My_Task really are one and the same object. 

When returning a task from a function, it is activated after the function returns. The “… -- 
some statements” part had better not try to call one of the task’s entries, because that 
would deadlock. That is, the entry call would wait until the task reaches an accept 
statement, which will never happen, because the task will never be activated. 

While the extended_return_statement was added to the language specifically to support 
limited constructor functions, it comes in handy whenever you want a local name for the 
function result: 

   function Make_String (…) return String is 
      Length : Natural := 10; 
   begin 
      if … then 
         Length := 12; 
      end if; 
      return Result : String (1..Length) do 
         … -- fill in the characters 
         pragma Assert (Is_Good (Result)); null; 
      end return; 
   end Make_String; 



Gem #11: Limited Types in Ada 2005 — Constructor Functions Part 2 

Author: Bob Duff, AdaCore 

Abstract: Ada Gem #11 — We show here how limited constructor functions can be used 
in various contexts to build new limited objects in place.  

Let’s get started… 

We’ve earlier seen examples of constructor functions for limited types similar to this: 

   package P is 
      type T (<>) is limited private; 
      function Make_T (Name : String) return T; -- constructor function 
   private 
      type T is new Limited_Controlled with 
         record 
            … 
         end record; 
   end P; 
 
   package body P is 
      function Make_T (Name : String) return T is 
      begin 
         return (Name => To_Unbounded_String (Name), others => <>); 
      end Make_T; 
   end P; 
 
   function Make_Rumplestiltskin return T is 
   begin 
       return Make_T (Name => “Rumplestiltskin”); 
   end Make_Rumplestiltskin; 

It is useful to consider the various contexts in which these functions may be called. 
We’ve already seen things like: 

   Rumplestiltskin_Is_My_Name : T := Make_Rumplestiltskin; 

in which case the limited object is built directly in a standalone object. This object will be 
finalized whenever the surrounding scope is left. 

We can also do: 

   procedure Do_Something (X : T); 
     
   Do_Something (X => Make_Rumplestiltskin); 

Here, the result of the function is built directly in the formal parameter X of 
Do_Something. X will be finalized as soon as we return from Do_Something. 



We can allocate initialized objects on the heap: 

   type T_Ref is access all T; 
   Global : T_Ref; 
 
   procedure Heap_Alloc is 
      Local : T_Ref; 
   begin 
      Local := new T’(Make_Rumplestiltskin); 
      if … then 
         Global := Local; 
      end if; 
   end Heap_Alloc; 

The result of the function is built directly in the heap-allocated object, which will be 
finalized when the scope of T_Ref is left (long after Heap_Alloc returns). 

We can create another limited type with a component of type T, and use an aggregate: 

   type Outer_Type is limited 
      record 
         This : T; 
         That : T; 
      end record; 
 
   Outer_Obj : Outer_Type := (This => Make_Rumplestiltskin, 
                              That => Make_T (Name => “”)); 

As usual, the function results are built in place, directly in Outer_Obj.This and 
Outer_Obj.That, with no copying involved. 

The one case where we _cannot_ call such constructor functions is in an assignment 
statement: 

   Rumplestiltskin_Is_My_Name := Make_T(Name => ""); -- Illegal! 

which is illegal because assignment statements involve copying. Likewise, we can’t copy 
a limited object into some other object: 

   Other : T := Rumplestiltskin_Is_My_Name; -- Illegal! 



Gem #12: Limited Types in Ada 2005 — <> Notation Part 2 
Author: Bob Duff, AdaCore 

Abstract: Ada Gem #12 — We show how the <> notation in aggregates may be used to 
make better use of record-component default values, thus avoiding duplication of code.  

Let’s get started… 

Have you ever written Ada 95 code like this? 

   package P is 
      type T is private; 
      … 
   private 
      type T is 
         record 
            Color : Color_Enum := Red; 
            Is_Gnarly : Boolean := False; 
            Count : Natural; 
         end record; 
   end P; 
 
   package body P is 
      Object_100 : constant T :=  
         (Color => Red, Is_Gnarly => False, Count => 100); 
      … 
   end P; 

We want Object_100 to be a default-initialized T, with Count equal to 100. It’s a little bit 
annoying that we had to write the default values Red and False twice. What if we change 
our mind about Red, and forget to change it in all the relevant places? 

The “<>” notation comes to the rescue. If we want to say, “make Count equal 100, but 
initialize Color and Is_Gnarly to their defaults”, we can do this: 

   Object_100 : constant T :=  
      (Color => <>, Is_Gnarly => <>, Count => 100); 

On the other hand, if we want to say, “make Count equal 100, but initialize all other 
components, including the ones we might add next week, to their defaults”, we can do 
this: 

   Object_100 : constant T := (Count => 100, others => <>); 

Note that if we add a component “Glorp : Integer;” to type T, then the “others” case 
leaves Glorp undefined just as this Ada 95 code would do: 

   Object_100 : T; 



   Object_100.Count := 100; 

Think twice before using “others”. 



Gem #13: Interrupt Handling Idioms (Part 1) 

Author: Pat Rogers, AdaCore 

Abstract: Ada Gem #13 — There are two design idioms commonly used when handling 
interrupts with Ada. One has more of the characteristics associated with good software 
engineering, the other somewhat better performance. We explore these two idioms in this 
gem. 

Let’s get started… 

Recall that, in Ada, protected procedures are the standard interrupt-handling mechanism. 
This approach has a number of advantages over the “traditional” use of non-protected 
procedures. First, normal procedures don’t have a priority, but protected objects can have 
an interrupt priority assigned and are thus integrated with the overall priority semantics. 
Execution of entries and procedures within the protected object will execute at that level 
and only higher-level interrupts can preempt that execution. Thus no race conditions are 
possible either. Additionally, condition synchronization is expressed directly, via entry 
barriers, making interaction with other parts of the system easy to express and 
understand. Finally, protected objects support localization of data and their manipulating 
routines, as well as localization of multiple interrupt handlers within one protected object 
when they each need access to the local data. 

The response to interrupts is often arranged in levels, with a first-level handler providing 
a very fast response that does limited processing and a secondary-level handler that does 
more expensive processing outside of the interrupt context, at application-level priority. 
A natural expression of this structure is to use a protected procedure as the first-level 
handler and a task as the secondary level. The protected procedure responds to the 
interrupt and then signals the task when it should run. 

For example, consider message handling over a UART (Universal Asynchronous 
Receiver Transmitter), in which an interrupt signals arrival of the first character. The 
interrupt handler procedure would capture that character, place it into a buffer within the 
protected object, and then either poll for the remaining characters (if appropriate) or reset 
for the next interrupt. Once the entire message is received the protected procedure could 
then signal the secondary handler task to parse the message and respond accordingly. 

We will implement such a message processor using both design idioms. In each case we 
encapsulate both levels of the interrupt handling code inside the body of a package named 
Message_Processor. All the processing is done in the package body and nothing is 
exported that requires a completion. Hence we need a pragma Elaborate_Body in the 
declaration to make the package body legal. The content of the package declaration, as 
shown below, would probably go in the body as well, but for the purpose of this gem we 
will leave them here. 

 
 



package Message_Processor is 
 
  pragma Elaborate_Body; 
 
  subtype Message_Size is Integer range 1 .. 256; — arbitrary 
 
  type Contents is array (Message_Size range <>) of Character; 
 
  type Message (Size : Message_Size) is 
    record 
      Value  : Contents (1..Size); 
      Length : Natural := 0; 
    end record; 
 
end Message_Processor; 

First Design Idiom 

In the first idiom the first-level protected procedure handler signals the second-level task 
handler by enabling a barrier on a protected entry in the same protected object. The 
second-level task suspends on the entry call and, when allowed to resume execution, 
performs the secondary processing. Entry parameters can be used to pass information to 
the task, for example the message received on the UART. The code for this idiom results 
in a package body structured as follows: 

with UART; 
with System; 
with Ada.Interrupts; 
 
package body Message_Processor is 
 
   Port : UART.Device; 
 
   protected Receiver is … — the first-level handler 
 
   protected body Receiver is … 
 
   task Process_Messages is … 
 
   task body Process_Messages is … 
 
begin 
   UART.Configure (Port, UART_Data_Arrival, UART_Priority); 
   UART.Enable_Interrupts (Port); 
end Message_Processor; 

In the above, the protected object Receiver is the first-level handler; the secondary 
handler is the task Process_Messages. The UART hardware is represented by the object 
named Port, of a type defined by package UART (not shown). The package body 
executable part automatically configures the UART and enables its interrupts after the 
protected object and task are elaborated. 



The protected object Receiver contains the interrupt-handling procedure, the entry to be 
called by the secondary handler task, a buffer containing the currently received 
characters, and a boolean variable used for the entry barrier: 

   UART_Priority     : constant System.Interrupt_Priority   := … 
   UART_Data_Arrival : constant Ada.Interrupts.Interrupt_Id := … 
 
   protected Receiver is 
      entry Wait (Msg : access Message); 
      pragma Interrupt_Priority (UART_Priority); 
   private 
      procedure Handle_Incoming_Data; 
      pragma Attach_Handler (Handle_Incoming_Data, UART_Data_Arrival); 
      Buffer        : Contents (Message_Size); 
      Length        : Natural := 1; 
      Message_Ready : Boolean := False; 
   end Receiver; 

The pragma Interrupt_Priority assigns the given priority to the whole protected 
object. No other interrupts at or below that level will be enabled whenever the procedure 
is executing. Note that the procedure is declared in the private part of the protected 
object. Placement there precludes “accidental” calls from client software in future 
maintenance activities. Note also the pragma Attach_Handler that permanently ties the 
procedure to the interrupt. 

In the body of the protected object we have the bodies for the entry and the procedure. 
The entry is controlled by the boolean Message_Ready that is set to True when the 
interrupt handler determines that all the characters have been received for a given 
message. The entry body copies the buffer content directly into the caller’s Message 
object and then resets the buffer for the next message arrival. 

   protected body Receiver is 
 
      entry Wait (Msg : access Message) when Message_Ready is 
      begin 
         Msg.Value (1 .. Length) := Buffer (1 .. Length); 
         Msg.Length := Length; 
         — reset for next arrival 
         Length := 1; 
         Message_Ready := False; 
      end Wait; 
 
      procedure Handle_Incoming_Data is 
      begin 
         UART.Disable_Interrupts (Port); 
         Buffer (1) := UART.Data (Port); 
         — poll for all remaining 
         while UART.Data_Available (Port) loop 
            Length := Length + 1; 
            Buffer (Length) := UART.Data (Port); 
         end loop; 
         UART.Enable_Interrupts (Port); 
         — wake up the task 



         Message_Ready := True; 
      end Handle_Incoming_Data; 
 
   end Receiver; 

The interrupt handler procedure uses the polling approach in this example. It first disables 
further interrupts from the UART and then captures all the incoming characters. Finally, 
in re-enables the device interrupts and enables the entry by setting Message Ready to 
True. 

The second-level handler task has no entries of its own because nothing calls it. We only 
need to set the priority of the task, as specified in package Config (not shown) that 
defines all the priorities of the application. 

   task Process_Messages is 
      pragma Priority (Config.Process_Messages_Priority); 
   end Process_Messages; 
 
   task body Process_Messages is 
      Next_Message : aliased Message (Size => Message_Size’Last); 
   begin 
      — any initialization code 
      loop 
         Receiver.Wait (Next_Message’Access); 
         — process Next_Message … 
      end loop; 
   end Process_Messages; 

The task suspends until the entry is executed and then processes the message is some 
application-defined way. 

Next week we will explore the second design idiom and then compare the two. Stay 
tuned for more…  



Gem #14: Interrupt Handling Idioms (Part 2) 

Author: Pat Rogers, AdaCore 

Abstract: Ada Gem #14 — There are two design idioms commonly used when handling 
interrupts with Ada. One has more of the characteristics associated with good software 
engineering, the other somewhat better performance. We explore these two idioms in this 
gem.  

Let’s get started… 

Last week we introduced this topic and explored the first of the two designs. The gist of it 
is that we want to implement a multi-level response to interrupts, in which a protected 
procedure implements the first-level handler and a task implements the secondary level 
handling outside of the interrupt context. We use serial communications over a UART 
(Universal Asynchronous Receiver Transmitter) as the example. In both designs we 
encapsulate the two levels of the interrupt handling code inside the body of a package 
named Message_Processor. 

Second Design Idiom 

The second idiom is similar to the first, in that a protected object encapsulates the 
interrupt handling procedure, but this second design uses a Suspension_Object, instead 
of a protected entry, to signal the task. The type Suspension_Object is declared within 
package Ada.Synchronous_Task_Control and is essentially a boolean flag with 
synchronization. A single task can await a given Suspension_Object becoming “true” 
and will suspend until another task sets that state. The resulting structure for the package 
body is as follows: 

with UART; 
with System; 
with Ada.Interrupts; 
with Ada.Synchronous_Task_Control; 
 
package body Message_Processor is 
 
  Port : UART.Device; 
 
  package STC renames Ada.Synchronous_Task_Control; 
 
  Message_Ready : STC.Suspension_Object; 
 
  Buffer : Contents (Message_Size); 
  Length : Natural := 1; 
 
  protected Receiver is … 
 
  protected body Receiver is … 
 
begin 



  UART.Configure (Port, UART_Data_Arrival, UART_Priority); 
  UART.Enable_Interrupts (Port); 
end Message_Processor; 

The significant differences in structure include the new Suspension_Object and the 
buffer containing the most recently received message, moved from within the protected 
object to the package body declarative part. 

The protected object Receiver no longer declares an entry because it uses 
Message_Ready to signal the task. No local data are required either. Only the interrupt 
handling procedure is required. 

  protected Receiver is 
    pragma Interrupt_Priority (UART_Priority); 
  private 
    procedure Handle_Incoming_Data; 
    pragma Attach_Handler (Handle_Incoming_Data, UART_Data_Arrival); 
  end Receiver; 

The body of the procedure is identical to that of the other design idiom except that it sets 
the Suspension_Object to True instead of setting a local boolean variable used in an 
entry barrier. 

  protected body Receiver is 
 
    procedure Handle_Incoming_Data is 
    begin 
      — as before 
      … 
 
      STC.Set_True (Message_Ready); 
    end Handle_Incoming_Data; 
 
  end Receiver; 

Now the task does the work that the entry did in the other design. It first waits for 
Message_Ready to be True, suspending if necessary. Then it copies the buffer content to 
the local Message object and resets for the next arrival. Note that when 
Suspend_Until_True executes, the specified Suspension_Object is automatically set 
to False on exit. 

  task body Process_Messages is 
    Next_Message : aliased Message (Size => Message_Size’Last); 
  begin 
    — any initialization code here… 
    loop 
      STC.Suspend_Until_True (Message_Ready); 
      — capture the new message in Buffer 
      Next_Message.Value (1..Length) := Buffer (1..Length); 
      Next_Message.Length  := Length; 
      — reset for next arrival 
      Length := 1; 



      — process Next_Message … 
    end loop; 
  end Process_Messages; 

Design Idiom Comparison 

The first idiom, in which an entry is used to signal the second-level handler, is a better 
design from a software engineering point of view: functionality is grouped with the 
manipulated data (the buffer is local to the protected object), condition synchronization is 
directly expressed via the entry barrier and is not implemented by the calling task, and 
communication is accomplished via the entry parameters. All these characteristics result 
in a more maintainable, robust implementation. 

However, the semantics of protected objects implies a run-time cost that, albeit relatively 
small, is greater than that of a Suspension_Object. The second idiom is very likely to be 
faster than the first, assuming a decent implementation of the type Suspension_Object. 
However, placing all the code within the package body limits the deleterious effects of 
the resulting structure. 

The interrupt handling and management facilities provided by Ada are defined in the 
Systems Programming Annex, section C.3, of the Reference Manual. Support is 
extensive and is well worth studying. 



Gem #15: Timers 

Author: Anh Vo, Santa Clara, California 

Abstract: Ada Gem #15 — Timers are essential software elements of embedded and 
real-time systems. Thus, making an intuitive and easy way to create timers helps in the 
software design process. 

Let’s get started… 

Timers are essential software elements of embedded and real-time systems. Thus, making 
an intuitive and easy way to create timers helps in the software design process. Ada 
provides a predefined package named Ada.Real_Time.Timing_Events for doing just that. 
With this package, a timer, one-shot or periodic one, can be created with a breeze. 
Furthermore, these timers can be genericized for different durations. Going one step 
further these generic timers can be combined in a single generic package as shown below 
along with the test codes. Note that the test codes are pretty crude. However, the output is 
printed out for each second approximately. Thus, the test results can be checked using 
one thousand count rule, one thousand one, one thousand two… 

Here is an example for creating a 250 millisecond one-shot timer. 

with Generic_Timers; 
with Ada.Real_Time; 
with Ada.Text_Io; 
… 
declare 
   use Ada; 
   Span : constant Time_Span := Real_Time.Milliseconds (250); 
   Timer_Id : constant String := “250 Millisecond One Shot timer”; 
 
   procedure Timer_Handler is 
   begin 
      Put_Line (”Do whatever is necessary when the timer expires”); 
   end Timer_Handler; 
 
   package The_Timer is new Generic_Timers (True, Timer_Id, Span, 
Timer_Hander); –timer object 
begin 
   … 
   The_Timer.Start; 
   … 
end; 
… 

Other one-shot timers and periodic timers for different durations are in the test package 
Timers_Test. Note that at my current project creating a timer takes five to ten times 
longer and much less intuitive. On this note, enjoy it with a smile. 



Gem #16: Pragma No_Return 

Author: Bob Duff, AdaCore 

Abstract: Ada Gem #16 — Pragma No_Return may be used to mark procedures that 
cannot return normally.  

Let’s get started… 

Did he ever return,  
No he never returned  
And his fate is still unlearn’d  
He may ride forever  
‘neath the streets of Boston  
He’s the man who never returned.  
– from “Charlie on the M.T.A.”  
– by The Kingston Trio 

It is occasionally useful to have a procedure that never returns normally, where 
“normally” means reaching the “end” or executing a “return;”. For example, a procedure 
might format an error message based on its parameters, send the message to a log file, 
and then unconditionally raise an exception. Other ways to avoid returning normally are 
to loop forever, and to wait upon an entry barrier that never becomes True. 

Such procedures are unusual, and therefore deserve to be documented. A comment 
works, but pragma No_Return is better because the compiler makes sure that the 
procedure does not, in fact, return: 

   procedure Log_Error (…); 
   pragma No_Return (Log_Error);  —  Mark it as a non-returning 
procedure. 
 
   procedure Log_Error (…) is 
   begin 
      Put_Line (…); 
      raise Some_Error; 
   end Log_Error; 

Pragma No_Return in Ada 2005 was inspired by the implementation-defined pragma 
No_Return that has existed in GNAT for some time. Now it’s a standard feature of the 
Ada language. 

According to the Ada RM, if a non-returning procedure reaches the “end”, 
Program_Error is raised. But that’s just a tripping hazard; what we really want is a 
compile-time check. In fact, if there is any control-flow path that can reach the “end” of a 
supposedly non-returning procedure, GNAT will give a warning. As always, you can tell 
GNAT to treat warnings as errors. These warnings are necessarily conservative, so you 



might sometimes need to use pragma Warnings (Off) to prevent the compiler from 
“crying wolf”. 

See also paragraph 6.5.1(1.a/2) of the Annotated Ada Reference Manual, regarding 
pragma No_Deposit: http://www.adaic.org/standards/05aarm/html/AA-6-5-1.html 



Gem #17: Pragma No_Return, Part 2 (functions) 

Author: Bob Duff, AdaCore 

Abstract: Ada Gem #17 — GNAT warns about functions that might reach their “end”, 
and sometimes these warnings are false alarms. Pragma No_Return can be used to 
suppress such false alarms. 

Let’s get started… 

A function should always return a value or raise an exception. That is, reaching the “end” 
of a function is an error. In Ada, this error is detected in two ways: 

1. Every function must contain at least one return statement. This rule is too liberal, 
because some control-flow path might bypass the return statement. This rule is too 
conservative, because it requires a return even when all you want to do is raise an 
exception: 

      function F (…) return … is 
      begin 
         raise Not_Yet_Implemented;  —  Illegal! 
      end F; 

Function F isn’t WRONG — it’s just not finished. In my opinion, this rule should have 
been abolished, and replaced with a control-flow analysis similar to what GNAT does 
(see below). 

2. If a function reaches its “end”, Program_Error is raised. This catches all such errors, 
but it’s unsatisfying; a compile-time check would be better. 

Indeed, GNAT provides an effective compile-time check: it gives a warning if there is 
any control-flow path that might reach the “end”: 

      function F (…) return … is 
      begin 
         if Some_Condition then 
            return Something; 
         elsif Some_Other_Condition then 
            return Something_Else; 
         end if; 
         —  CAN get here! 
      end F; 

There is a bug, if Some_Condition and Some_Other_Condition don’t cover all the 
cases, and GNAT will warn. We can fix it in several ways, such as: 

      function F (…) return … is 
      begin 
         if Some_Condition then 



            return Something; 
         elsif Some_Other_Condition then 
            return Something_Else; 
         else 
            raise Some_Exception; 
         end if; 
      end F; 
or:  
      function F (…) return … is 
      begin 
         if Some_Condition then 
            return Something; 
         else 
            pragma Assert (Some_Other_Condition); 
            return Something_Else; 
         end if; 
      end F; 

or (and here’s the No_Return): 

   procedure Log_Error (…); 
   pragma No_Return (Log_Error); 
 
   function F (…) return … is 
   begin 
      if Some_Condition then 
         return Something; 
      elsif Some_Other_Condition then 
         return Something_Else; 
      else 
         Log_Error (…); 
      end if; 
   end F; 

GNAT will not cry wolf on the last three versions of F, because it does a simple control-
flow analysis to prove that every path reaches either a return statement, or a raise 
statement, or a non-returning procedure (which presumably contains a raise statement, 
directly or indirectly). 

One way to look at it is that pragma No_Return allows you to wrap a raise statement in a 
slightly higher level abstraction, without losing the above-mentioned control-flow 
analysis. No_Return is part of the contract; F relies on Log_Error not returning, and the 
compiler ensures that the body of Log_Error obeys that contract. 



Gem #18: Warnings in GNAT 

Author: Bob Duff, AdaCore 

Abstract: Ada Gem #18 — This “gem” is not about the Ada language, but about a set of 
GNAT-specific features related to warnings. We discuss how to make the best use of 
GNAT’s warnings. 

Let’s get started… 

The recent “gems” about pragma No_Return talked a lot about compile-time checks that 
generate warnings. Indeed, GNAT is capable of generating lots of useful warnings. Here 
is some advice about how to get the most out of these warnings. 

What’s the difference between a “warning” and an “error”? First, errors are generally 
violations of the Ada language rules as specified in the Ada Reference Manual; warnings 
are GNAT specific. Thus, other Ada compilers might not warn about the same things that 
GNAT does. Second, warnings are typically conservative; that is, some warnings will be 
false alarms, and the programmer needs to study the code to see if the warning is a real 
problem. 

Some warnings are given by default, whereas some are given only if a switch enables 
them. Use the -gnatwa switch to turn on (almost) all warnings. 

Warnings are useless if you don’t do something about them. If you give your team-
member some code that causes warnings, how are they supposed to know if they 
represent real problems? Pretty soon people will ignore warnings, and they will scatter 
themselves all about the code. Use the -gnatwae switch to turn on (almost) all warnings, 
and to treat warnings as errors. This will force you to get a clean (no warnings or errors) 
compilation. 

But some warnings are false alarms. Use pragma Warnings (Off) to suppress false 
alarms. It’s best to be as specific as possible: narrow down to a single line of code, and a 
single warning message. And use a comment to explain why the warning is a false alarm, 
if it’s not obvious. The following, compiled with -gnatwae: 

   package body Warnings_Example is 
 
      procedure Mumble (X : Integer) is 
      begin 
         null; 
      end Mumble; 
 
   end Warnings_Example; 

will cause GNAT to complain: 



warnings_example.adb:5:22: warning: formal parameter "X" is not 
referenced 

But the following will compile cleanly: 

   package body Warnings_Example is 
 
      pragma Warnings (Off, "formal parameter ""X"" is not 
referenced"); 
      procedure Mumble (X : Integer) is 
      pragma Warnings (On, "formal parameter ""X"" is not referenced"); 
      --  X is ignored here, because blah blah blah... 
      begin 
         null; 
      end Mumble; 
 
   end Warnings_Example; 

Here we’ve suppressed the specific warning message on a specific line. 

If you get many warnings of a specific type, and it’s not feasible to fix them all, then 
suppress that type of message, so the good warnings won’t get buried beneath a pile of 
bogus ones. The -gnatwaeF switch will silence the warning on the first version of 
Mumble above: the F means suppress warnings on unreferenced formal parameters, and 
would be a good idea if you have lots of those. 

In summary, I suggest turning on as many warnings as makes sense for your project. 
Then whenever you see a warning message, look at the code and decide if it’s real. If so, 
fix the code. If it’s a false alarm, suppress the warning. Either way, make the warning 
disappear before checking your code into your configuration management system. 

The details of the switches and pragmas can be found in the GNAT Reference Manual 
and User Guide. 



Gem #19: XML streaming of Ada objects 

Author:  Pascal Obry, EDF R&D 

Abstract: Ada Gem #19 — XML streaming of Ada objects 

Let’s get started… 

Since Ada 95 it has been possible to stream any object. Using 'Input/'Output or 
'Read/'Write attributes, any object (tagged or not) can be streamed using a binary 
representation. This means that objects can be written into a file or sent over a socket, for 
example. 

Let’s take a simple object hierarchy to illustrate this feature. We’ll have a Point (x and y 
coordinate) and a Pixel (a Point with a color). 

   package Object is 
 
      type Point is tagged record 
         X, Y : Float; 
      end record; 
 
      type Color_Name is (Red, Green, Blue); 
 
      type Pixel is new Point with record 
         Color : Color_Name; 
      end record; 
   end Object; 

When writing a Point or a Pixel the first bytes in the stream are the tag external 
representation then the object’s attribute values. 

   declare 
      File : File_Type; 
      P    : Point'Class := ...; 
   begin 
      Create (File, Out_File, "streamed.data"); 
      Point'Class'Output (Text_Streams.Stream (File), P); 
      Close (File); 
   end; 

The stream will contain something like (where is the character hexadecimal code): 

   <01> <00> <00> <00> <0C> <00> <00> <00> O B J E C T . P I X E L 
   <9A> <99> <99> <3f> <66> <66> <06> <41> <00> 

The tag is an important part as it will be used to be able to create the proper object 
instance out of the stream. 

   P := constant Point'Class := 



          Point'Class'Input (Text_Streams.Stream (File)); 

All is well! No, there is a little missing feature. There is no way to control how the 
external tag is streamed. In fact, it is a string and the bounds (lower and upper) are first 
output into the stream. These bounds are plain numbers written in binary. 

In the above example we have the four first bytes for lower bound (equal to 1) and the 
four following bytes for the upper bound (equal to 12) then the twelve bytes for the 
external tag full name OBJECT.PIXEL. 

In Ada 95 there is no way to stream a textual representation of objects! 

But the good news is… Ada 2005 can do this. Ada 2005 goes further by adding support 
to control finely the external representation of any objects. This means that it is now 
possible to create a textual representation of such an object using the 'Class'Input and 
'Class'Output attributes. 

Let’s put in place the missing pieces. 

First the 'Read and 'Write attributes to output or read the XML representation of a Point 
or a Pixel. 

   with Ada.Streams; 
 
   package Object is 
 
      type Point is ... 
 
      procedure Read (S : access Root_Stream_Type'Class; O : out 
Point); 
      for Point'Read use Read; 
 
      procedure Write 
        (S : access Root_Stream_Type'Class; O : in Point); 
      for Point'Write use Write; 
 
      type Pixel is ... 
 
      procedure Read (S : access Root_Stream_Type'Class; O : out 
Pixel); 
      for Pixel'Read use Read; 
 
      procedure Write 
        (S : access Root_Stream_Type'Class; O : in Pixel); 
      for Pixel'Write use Write; 

The Read routines could be implemented using a full featured XML parser like 
XML/Ada. For conciseness, we will use two very simple XML oriented routines: 

   procedure Skip_Tag 
     (S      : access Ada.Streams.Root_Stream_Type'Class; 



      Ending : in     Character := '>'); 
   --  Skip the next tag on stream S, returns when Ending is found 
 
   function Get_Value 
     (S : access Ada.Streams.Root_Stream_Type'Class) return String; 
   --  Returns the current value read on stream S 

Using those routines the 'Read and 'Write implementation are straightforward. Here is 
the implementation for a Point: 

   procedure Read (S : access Root_Stream_Type'Class; O : out Point) is 
   begin 
      Skip_Tag (S); O.X := Float'Value (Get_Value (S)); Skip_Tag (S, 
ASCII.LF); 
      Skip_Tag (S); O.Y := Float'Value (Get_Value (S)); Skip_Tag (S, 
ASCII.LF); 
   end Read; 
 
   procedure Write (S : access Root_Stream_Type'Class; O : in Point) is 
   begin 
      String'Write (S, "   <x>"  & Float'Image (O.X) & "</x>" & 
ASCII.LF); 
      String'Write (S, "   <y>"  & Float'Image (O.Y) & "</y>" & 
ASCII.LF); 
   end Write; 

The last missing piece is the handing of the tag. We want the tag to be simply: <point> 
and <pixel> (no bound and just the name of the object instead of the full name prefixed 
by the enclosing package name). To set the proper tag name we use the External_Tag 
attribute: 

   package Object is 
 
      type Point is ... 
      for Point'External_Tag use "point"; 
 
      type Pixel is ... 
      for Pixel'External_Tag use "pixel"; 

Then we want to plug in our own XML oriented implementation of the 'Class'Input 
and 'Class'Output attributes. This is necessary only for the root type Point: 

   package Object is 
 
      type Point is ... 
      for Point'External_Tag use "point"; 
 
      procedure Class_Output 
        (S : access Ada.Streams.Root_Stream_Type'Class; O : in 
Point'Class); 
      for Point'Class'Output use Class_Output; 
 
      function Class_Input 



        (S : access Ada.Streams.Root_Stream_Type'Class) return 
Point'Class; 
      for Point'Class'Input use Class_Input; 

The Class_Output routine must output the opening XML tag, output the object itself and 
then the closing XML tag. Quite simple to do; the following is the commented code: 

   procedure Class_Output 
     (S : access Ada.Streams.Root_Stream_Type'Class; O : in 
Point'Class) is 
   begin 
      --  Write the opening tag  
      Character’Write (S, ‘<'); 
      String'Write (S, Ada.Tags.External_Tag (O'Tag)); 
      String'Write (S, '>‘ & ASCII.LF); 
 
      —  Write the object, dispatching call to Point/Pixel’Write 
      Point’Output (S, O); 
 
      —  Write the closing tag  
      String’Write (S, “‘ & ASCII.LF); 
   end Class_Output; 

And now the final part using Ada.Tags.Generic_Dispatching_Constructor which 
will create an object out of a stream given the object’s tag. This must do the exact 
opposite of the Class_Output routine. The opening XML tag is read, then the object 
using Generic_Dispatching_Constructor and finally the closing XML tag. 

   function Class_Input 
     (S : access Ada.Streams.Root_Stream_Type'Class) return Point'Class 
   is 
      function Dispatching_Input is 
         new Ada.Tags.Generic_Dispatching_Constructor 
           (T           => Point, 
            Parameters  => Ada.Streams.Root_Stream_Type'Class, 
            Constructor => Point'Input); 
      Input     : String (1 .. 20); 
      Input_Len : Natural := 0; 
   begin 
      --  On the stream we have , we want to get “tag_name” 
      —  Read first character, must be ‘<' 
      Character'Read (S, Input (1)); 
      if Input (1) /= '<' then 
         raise Ada.Tags.Tag_Error with "starting with " & Input (1); 
      end if; 
 
      --  Read the tag name 
      Input_Len := 0; 
      for I in Input'range loop 
         Character'Read (S, Input (I)); 
         Input_Len := I; 
         exit when Input (I) = '>‘; 
      end loop; 
 



      —  Check ending tag 
      if Input (Input_Len) /= ‘>’ 
        or else Input_Len <= 1 
      then -- Empty tag 
         raise Ada.Tags.Tag_Error with "empty tag"; 
      else 
         Input_Len := Input_Len - 1; 
      end if; 
 
      declare 
         External_Tag : constant String := Input (1 .. Input_Len); 
         O            : constant Point'Class := Dispatching_Input 
                          (Ada.Tags.Internal_Tag (External_Tag), S); 
         --  Dispatches to appropriate Point/Pixel'Input depending on 
         --  the tag name. 
      begin 
         --  Skip closing object tag 
         Skip_Tag (S); Skip_Tag (S, ASCII.LF); 
         return O; 
      end; 
   end Class_Input; 

At this point the code shown at the start will still work without modification. The fact that 
the object is streamed using an XML representation is transparent to the users of the 
Object package. 

As a final note, for conciseness, the code as-is does not output conformant XML 
documents as there is no XML header and there are multiple root nodes. This is left as an 
exercise to the reader. 



Gem #20: Using pragma Shared_Passive for data persistence 

Author: Pascal Obry, EDF R&D 

Abstract: Ada Gem #20 — Using pragma Shared_Passive for data persistence. 

Let’s get started… 

Data persistence can be achieved in many ways starting as simple as using hand-written 
code to store and load data into some text files to something as complex as mapping the 
data into a relational or object database for example. 

In some cases we just want to store the content of a set of variables. Ada provides such 
support using the Annex-E shared passive pragma. Let’s write a simple counter that will 
increment each time the application is run: 

   package Store is 
      pragma Shared_Passive; 
      Counter : Natural := 0; 
   end Store; 

And yes that’s all! The variable’s current value is read at elaboration time and written 
during program finalization. Shared passive unit state is saved on disk using one file for 
each top-level declaration (variables, protected objects). The filename is composed of the 
unit name and the declaration name separated by a dot. The above counter variable state 
will be saved into the file named “store.counter” for example. 

So the main is as simple as: 

   with Ada.Text_IO; 
   with Store; 
 
   procedure Main is 
      use Ada.Text_IO; 
   begin 
      Put_Line (”Counter : ” & Natural’Image (Store.Counter)); 
      Store.Counter := Store.Counter + 1; 
   end Main; 

Each time this program is run it will increment Counter by one. There is nothing to save 
or load explicitly. 

In the context of concurrent programming it may be necessary to add proper 
synchronization. This can be easily done by using a protected object on the shared 
passive package. 

   package Store is 
      pragma Shared_Passive; 
 



      protected Shared is 
         function Counter return Natural; 
         procedure Increment; 
      private 
         C : Natural := 0; 
      end Shared; 
   end Store; 

Note that the set of objects that can be declared is restricted as a shared passive unit can 
only depend on pure or other shared passive units. So, for example, it is not possible to 
declare an Unbounded_String nor any Ada.Containers in a shared passive unit. 

Yet it is possible to declare complex objects like records or arrays in a shared passive 
partition and have them automatically saved. Let’s take for example the following 
complex matrix: 

   package Store is 
      pragma Shared_Passive; 
 
      type Complex is record 
         X, Y : Float; 
      end record; 
 
      type Matrix is array 
         (Positive range <>, Positive range <>) of Complex; 
 
      M : Matrix (1 .. 3, 1 .. 3); 
 
   end Store; 

In spite of the limitations, this cheap persistence support can be quite handy in some 
circumstances. 



Gem #21: How to parse an XML text 

Author: Emmanuel Briot, Senior Software Engineer, AdaCore 

Abstract: Ada Gem #21 — The World Wide Web Consortium (W3C) develops various 
specifications around the XML file format. In particular, it specifies various APIs to load, 
process and write an XML file. Although these APIs are not specified for Ada, XML/Ada 
tries to conform as closely as possible to them. This gem describes how to use XML/Ada 
to parse an XML file. 

Let’s get started… 

There are two main APIs to parse an XML file. One (the Document Object Model, 
DOM) reads the file and generates a tree in memory representing the whole document. 
Typically, because of the amount of operations mandated by the specifications, this tree 
is several times larger than the document itself, and thus depending on the amount of 
memory on your machine, it might limit the size of documents your application can read. 
On the other hand, it provides a lot of flexibility in the handling of these trees. 

The other method (SAX) is based on callbacks, which are called when various constructs 
are seen while reading the XML file. This requires almost no memory, but makes the 
processing of the XML file additional work for your application. It is however very well 
suited when you want to store the XML data in an application-specific data structure. In 
fact, XML/Ada itself uses SAX to build the DOM tree. 

In both cases, XML/Ada needs an object (an “input_source”) to read the actual XML 
data. This data can be found either on the disk, in memory, read from a socket, or any 
other possible source you can imagine. XML/Ada is carefully constructed so that it 
doesn’t require the whole document in memory, and can just read one character at a time, 
which makes it adaptable to any possible input. This gem does not cover how to write 
your own input streams. This is in general quite easy, the only difficulty is to properly 
convert the bytes you are reading to unicode characters. 

Here is a small example on using the DOM API to create a tree in memory. In this 
example, we are assuming the most frequent case of an XML file on the disk, and 
therefore we are using a File_Input as the input. The second object we need is the XML 
parser itself. When we want to create a DOM tree, we need to use a Tree_Reader, or a 
type derived from it. As we will see later, this is in fact a SAX parser (that is an event-
based XML parser) whose callbacks are implemented to create the DOM tree. You can of 
course override its primitive operations if you want to do additional things (like verbose 
output, redirect error messages, pre-processing of the XML nodes,…). 

with Input_Sources.File;  use Input_Sources.File; 
with DOM.Readers;         use DOM.Readers; 
with DOM.Core;            use DOM.Core; 
 
procedure Read_XML_File (Filename : String) is 



  Input  : File_Input; 
  Reader : Tree_Reader; 
  Doc    : Document; 
begin 
  Open (Filename, Input); 
  Parse (Reader, Input); 
  Close (Input); 
   
  Doc := Get_Tree (Reader); 
  ... 
  Free (Reader); 
end Read_XML_File; 

The first three lines read the file into memory. The fourth line gets a handle on the tree 
itself, which you can then manipulate with the various subprograms found in the 
DOM.Core.* packages (and that are mandated by the W3C specifications). When we are 
done, we simply free the memory. 

There are various settings that can be set on the reader before we actually parse the XML 
stream, for instance whether it should support XML namespaces, whether we want to 
validate the input, and so on. 

As we mentioned before, there exists a second, lower-level API called SAX which is 
event-based. It defines one tagged type, a Reader, which has several primitive operations 
that act as callbacks. You can override the ones you want. In general, the result of calling 
them is to create an in-memory representation of the XML input (which is what the DOM 
interface does, really). 

The following short example only detects the start of elements in the XML file, and prints 
their name on standard output. It has little interest in real applications, but is a good 
framework on which to base your own SAX parsers. 

with Sax.Attributes; 
with Sax.Readers;     use Sax.Readers; 
with Unicode.CES;     use Unicode.CES; 
 
package Debug_Parsers is 
   type Debug_Reader is new Reader with null record; 
   overriding procedure Start_Element 
     (Handler       : in out Debug_Reader; 
      Namespace_URI : Unicode.CES.Byte_Sequence := ""; 
      Local_Name    : Unicode.CES.Byte_Sequence := ""; 
      Qname         : Unicode.CES.Byte_Sequence := ""; 
      Atts          : Sax.Attributes.Attributes'Class); 
end Debug_Parsers; 

Here is the implementation of the Start_Element callback. We are assuming, in this 
simple example, that the console on which we are printing the output can accept unicode 
characters (in fact, all Put_Line does is to print a series of bytes, which are interpreted by 
the console to do the proper rendering of unicode glyphs). 



with Ada.Text_IO;   use Ada.Text_IO; 
 
package body Debug_Parsers is 
   procedure Start_Element 
     (Handler       : in out Debug_Reader; 
      Namespace_URI : Unicode.CES.Byte_Sequence := ""; 
      Local_Name    : Unicode.CES.Byte_Sequence := ""; 
      Qname         : Unicode.CES.Byte_Sequence := ""; 
      Atts          : Sax.Attributes.Attributes'Class) 
   is 
   begin 
      Put_Line ("Found start of " & Qname); 
   end Start_Element; 
end Debug_Parsers; 

And finally here is a short example of a program using that parser. Notice how it closely 
mimics what we did for DOM (which is not so surprising, since, once again, the DOM 
parser itself is really a special implementation of a SAX parser). 

with Input_Sources.File;  use Input_Sources.File; 
with Debug_Parsers;       use Debug_Parsers; 
 
procedure Test_Sax is 
  Input  : File_Input; 
  Reader : Debug_Reader; 
begin 
  Open (Filename, Input); 
  Parse (Reader, Input); 
  Close (Input); 
end Test_Sax; 

 

 


